最新AI論文をキャッチアップ

GANは本当に多くの研究に影響を与えている。

GANは本当に多くの研究に影響を与えている。

論文

GANはIan J. Goodfellowに提案されて以来、多くの研究に用いられています。多いとは言われていますが実際にどんだけが一月に出ているかご存知ですか?

arXivだけでも、約90本(3月), 70本(4月), 60本(5月), 100本(6月), 90本(7月)というペースで提出されています。平均すると1月に82本も出ています。1日に約2~3本は提出されているのでかなりの数になることがわかると思います。他のジェーナルなども合わせると1日に3~5本出ているとい考えるといいかもしれませんね。まだまだ勢いが止まることがありませんね。さらに怖いのがGANではなく、AI関連の論文で考えると1日にどれだけ出ているか考えただけで怖くなります。

では一旦8月期間中のGAN関連の論文を見てみましょう。こんなペースでGANの論文は出ています。ついていくだけでも大変ですね。

8/31

GIF: Generative Interpretable Faces

Shape Defense

 

8/30

 

8/29

Dual Attention GANs for Semantic Image Synthesis

 

8/28

Relational Data Synthesis using Generative Adversarial Networks: A Design Space Exploration

Adaptive WGAN with loss change rate balancing

 

8/27

Non-Parallel Voice Conversion with Augmented Classifier Star Generative Adversarial Networks

Crossing-Domain Generative Adversarial Networks for Unsupervised Multi-Domain Image-to-Image Translation

Direct Adversarial Training for GANs

 

8/26

Crossing-Domain Generative Adversarial Networks for Unsupervised Multi-Domain Image-to-Image Translation

MutaGAN  A Seq2seq GAN Framework to Predict Mutations of Evolving Protein Populations

Self-Supervised Human Activity Recognition by Augmenting Generative Adversarial Networks

Anime-to-Real Clothing  Cosplay Costume Generation via Image-to-Image Translation

CAN: A Causal Adversarial Network for Learning Observational and Interventional Distributions

 

8/25

GAN Slimming  All-in-One GAN Compression by A Unified Optimization Framework

 

8/24

CSCL  Critical Semantic-Consistent Learning for Unsupervised Domain Adaptation

Fidelity-Controllable Extreme Image Compression with Generative Adversarial Networks

Deep Learning Based on Generative Adversarial and Convolutional Neural Networks for Financial Time Series Predictions

 

8/23

Ptolemy  Architecture Support for Robust Deep Learning

 

8/22

Symbolic Semantic Segmentation and Interpretation of COVID-19 Lung Infections in Chest CT volumes based on Emergent Languages

 

8/21

TAnoGAN  Time Series Anomaly Detection with Generative Adversarial Networks

CDE-GAN  Cooperative Dual Evolution Based Generative Adversarial Network

DTDN  Dual-task De-raining Network

 

8/20

Conditional Wasserstein GAN-based Oversampling of Tabular Data for Imbalanced Learning

 

8/19

Improving Text to Image Generation using Mode-seeking Function

Regularization And Normalization For Generative Adversarial Networks  A Review

Blur-Attention  A boosting mechanism for non-uniform blurred image restoration

 

8/18

Generative Adversarial Networks for Spatio-temporal Data  A Survey

CinC-GAN for Effective F0 prediction for Whisper-to-Normal Speech Conversion

Tdcgan  Temporal Dilated Convolutional Generative Adversarial Network for End-to-end Speech Enhancement

 

8/17

Robust Autoencoder GAN for Cryo-EM Image Denoising

Neutral Face Game Character Auto-Creation via PokerFace-GAN

Semi-Supervised Learning with GANs for Device-Free Fingerprinting Indoor Localization

 

8/16

 

8/15

Evaluating Lossy Compression Rates of Deep Generative Models

 

8/14

 

8/13

Synthesizing Property & Casualty Ratemaking Datasets using Generative Adversarial Networks

DF-GAN  Deep Fusion Generative Adversarial Networks for Text-to-Image Synthesis

Recurrent Deconvolutional Generative Adversarial Networks with Application to Text Guided Video Generation

 

8/12

Mitigating Dataset Imbalance via Joint Generation and Classification

Improving Stability of LS-GANs for Audio and Speech Signals

Improving the Performance of Fine-Grain Image Classifiers via Generative Data Augmentation

VAW-GAN for Singing Voice Conversion with Non-parallel Training Data

 

8/11

IGANI  Iterative Generative Adversarial Networks for Imputation Applied to Prediction of Traffic Data

R-MNet  A Perceptual Adversarial Network for Image Inpainting

 

8/10

GANDALF  Generative Adversarial Networks with Discriminator-Adaptive Loss Fine-tuning for Alzheimer's Disease Diagnosis from MRI

GANBERT  Generative Adversarial Networks with Bidirectional Encoder Representations from Transformers for MRI to PET synthesis

T-GD  Transferable GAN-generated Images Detection Framework

 

8/9

Intervention Generative Adversarial Networks

 

8/8

Non-Adversarial Imitation Learning and its Connections to Adversarial Methods

 

8/7

Fighting Deepfake by Exposing the Convolutional Traces on Images

Improving the Speed and Quality of GAN by Adversarial Training

Generative Adversarial Network for Radar Signal Generation

Oversampling Adversarial Network for Class-Imbalanced Fault Diagnosis

 

8/6

Generative Adversarial Network-Based Sinogram Super-Resolution for Computed Tomography Imaging

Generative Adversarial Networks for Image and Video Synthesis  Algorithms and Applications

HooliGAN  Robust High Quality Neural Vocoding

F2GAN  Fusing-and-Filling GAN for Few-shot Image Generation

 

8/5

GL-GAN  Adaptive Global and Local Bilevel Optimization model of Image Generation

Structure Preserving Stain Normalization of Histopathology Images Using Self-Supervised Semantic Guidance

Annealing Genetic GAN for Minority Oversampling

A feature-supervised generative adversarial network for environmental monitoring during hazy days

 

8/4

Hierarchical Amortized Training for Memory-efficient High Resolution 3D GAN

Multimodal Image-to-Image Translation via a Single Generative Adversarial Network

TOAD-GAN  Coherent Style Level Generation from a Single Example

 

8/3

Generative Adversarial Networks for Synthesizing InSAR Patches

A Spectral Energy Distance for Parallel Speech Synthesis

Analyzing the Components of Distributed Coevolutionary GAN Training

Learning Based Methods for Traffic Matrix Estimation from Link Measurements

 

8/2

Multi-level Wavelet-based Generative Adversarial Network for Perceptual Quality Enhancement of Compressed Video

Point Cloud Completion by Learning Shape Priors

 

8/1

Joint Generative Learning and Super-Resolution For Real-World Camera-Screen Degradation

  • メルマガ登録(ver
  • ライター
  • エンジニア_大募集!!

記事の内容等について改善箇所などございましたら、
お問い合わせフォームよりAI-SCHOLAR編集部の方にご連絡を頂けますと幸いです。
どうぞよろしくお願いします。

お問い合わせする