Catch up on the latest AI articles

Copy And Paste As Data Augmentation!

Copy And Paste As Data Augmentation!

Data Augmentation

3 main points
✔️ Use of Copy-Paste algorithm for data augmentation in instance segmentation
Use of Copy-Paste algorithm in self-supervised (self-training) setting
✔️ New state of the art on COCO and LVIS datasets.

Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation
written by Golnaz GhiasiYin CuiAravind SrinivasRui QianTsung-Yi LinEkin D. CubukQuoc V. LeBarret Zoph
(Submitted on 13 Dec 2020)
Comments: Accepted by arXiv.
Subjects: Computer Vision and Pattern Recognition (cs.CV)


Like most deep learning, training instance segmentation models is a highly data-intensive process. Moreover, it takes a considerable amount of time and manual work to prepare these datasets. Data augmentation can help reduce the time and resources required and increase data efficiency. This paper is based on one of such methods: Copy-Paste augmentation. Unlike most image augmentation techniques, this method is more object-aware, and therefore it is intuitive to assume that it would suit instance(object) segmentation well. In addition, this paper also studies the effects of Copy-Paste augmentation when used with self-training (i. e. in a semi-supervised learning approach). These techniques result in a significant improvement in the state of the art on the COCO and LVIS datasets.

To read more,

Please register with AI-SCHOLAR.

Sign up for free in 1 minute

Thapa Samrat avatar
I am a second year international student from Nepal who is currently studying at the Department of Electronic and Information Engineering at Osaka University. I am interested in machine learning and deep learning. So I write articles about them in my spare time.

If you have any suggestions for improvement of the content of the article,
please contact the AI-SCHOLAR editorial team through the contact form.

Contact Us